

Topology Optimization and AM Simulation – Application at the micrometric scale

<u>Staub, Alexandre^{1,5};</u> Guadalupe Maldonado, Sandra²; Maurer, Manfred³; Weber, David⁴; Spierings, Adriaan¹

¹Inspire, Innovation Center for Additive Manufacturing Switzerland;

²Manufacture d'horlogerie Audemars Piguet SA, Switzerland;

³CADFEM (Suisse) AG, Switzerland;

⁴HE-Arc Ingénierie, Switzerland;

⁵ETH Zurich, Institute of Machine Tools and Manufacturing, Switzerland

CADFEM Conference 03/06/2021

Agenda

- DWAM Project Consortium
- Goals of the project
- Processing conditions for Ti6Al4V for fine layers
- Topology Optimization approach using Ansys
- Conclusion and outlook

DWAM Project Consortium

Goals of the project

- Improve processing conditions for fine details of Ti6Al4V
- Redesign micro-scaled components using topology optimization and the advantages of AM
- Lead AM process simulation at for micro scaled components and correct for in process / after process deformation
- Manufacture final components
- Implement a repeatable workflow for Audemars Piguet's daily use in new design development

Goals of the project

Workflow idea

Processing conditions for Ti6Al4V

- Fixed inputs:
 - Fine layers = $20\mu m$
 - -Small laser spot $1/e^2 = 56 \mu m$
 - -Processing under Argon

• With off-the-shelf powder:

- Difficulty in stabilizing the processing conditions:
 - -Layer to fine vs. mean particle diameter
 - -Meltpool too small vs. biggest particles

Titan ELI as recieved
 d50 = 32.8µm

Processing conditions for Ti6Al4V

Reduction of the powder fraction

Density results and first fine details

Processing conditions for Ti6Al4V

- Post processing
 - -Improve surface quality
 - -Reduce minimal feature size (to be fed in the topology optimization)
- Demonstrator part:
 - -Wall thickness 0.2 and 0.4mm
 - -Holes 4 and 2 mm

Results

arc AP CADFEM inspire

Processing conditions for Ti6Al4V

• Chemical etching at ETHZ

Etching using 40 wt.% Hydrofluoric acid (HF)
2Ti + 6HF -> 2TiF3 + 3 H2(g)

 Longer etching tend to heat up the bath and increase the corrosive effect → need a temperature control for such reactions.

Topology Optimization using ANSYS

- Topology optimization : numerical method that leads to a material distribution maximizing the performance of the system for given loading scenarios.
- Considered loading scenarios :
 - Assembly of the component in a bigger mechanism
 - Normal use
 - Extreme use (3 directional shocks, relevant for a watch application)
- Constraint for optimization
 - Mass 35% to be left
 - Convergence : 0.10% (appeared to be the most successful vs. time)
 - Keep the functional areas unchanged (holes)
- Optimization goal
 - Maximize stiffness
- Process:
 - 1. Clean up the part: from a complex design to a "maximal allowable design space"
 - 2. Define load cases (loading areas, shocks in all 3 directions, etc)
 - 3. Define additional geometrical constraints (ex : min. member size, regions to be left unmodified, mass to be retained, etc)

Original geometry

Max design space

Key learning on Topology optimization

- Smallest detail of your manufacturing process is not necessarily the smallest detail of your optimization In this case: smallest for topology: 0.6mm
- Defining your manufacturing strategy before optimization helps
 In this case: A flat surface is always saved as contact with the build plate and EDM cut-off.
 Ensuring a good surface finish for further processing (milling)
- Use topology optimization options to fit manufacturing constraints and to enhance aesthetics (Fig. 1)

In this case: the use of symmetry and "pull-out direction" in parts achieved more satisfactory results in terms of aesthetics design

- Implement extra dummy loadings to improve the obtained geometries (Fig. 2) In this case: A detail was not properly defined due to no solicitation, it was corrected with an extra load
- Topology optimization delivers solutions physically based on the considered load cases but can as well be used as a design generator.

arc AP cadfem inspire

Fig. 2 : Geometry improvement thanks to additional mechanical loads

Additive Print with Ansys

Ansys Additive Print : Powder Bed Fusion manufacturing simulation

- Simulate the thermally induced distortions
- Compensate for these distortions
- Simulate different support strategies
- Predict potential blade crash

Learnings :

- Even distortion patterns for microscale parts can be predicted
- Order of magnitude of distortions for these parts is small
- Predicting the effect of different support strategies can help with optimizing print setup
- For decent detail resolution, longer calculation times (hours to days) need to be accounted for

Process simulation

Demonstrator for topology optimization

Original geometry

Max design space

Optimized geometry

Smoothed geometry

Process simulation

Conclusion and Outlook

- Micro-scaled components have been redesigned using topology optimization and manufactured using SLM Process
- Remaining main challenges in SLM : surface roughness, part release, small details manufacturing
- Topology optimization is a great tool to achieve new design, even in less mechanically loaded parts
- The print process simulation can predict distortion patterns even at a microscale, but for a decent detail resolution a longer calculation time (hours to days) needs to be accounted for
- A good consortium is key: from software to final application our consortium support all steps and aspects of the project.
- Further work necessary in the post processing side to achieve better surface finishing for such components

Thank you for your attention

Interested in such topics ? Get in touch !

Alexandre Staub

Scientific Assistant R&D SLM Doctoral student at ETH Zurich staub@inspire.ethz.ch

Research associate at HE-ARC <u>Alexandre.Staub@he-arc.ch</u>

Strategic Partner of ETH Zurich