

"Laserstrahlschmelzen – experimentelle Untersuchungen und Validierung einer simulationsbasierten Prozesskette"

Daniel Maiwald (Fh-IWU); Sebastian Stelzer (Fh-IWU); Sebastian Hoffmann (CADFEM)

Agenda

- 1. Einleitung
- 2. Simulationsmodell
- 3. Experimentelle Prozessuntersuchungen
- 4. Validierung der Simulation
- 5. Fazit
- 6. Ausblick

1. Einleitung

- Laserstrahlschmelzen
 - additives Verfahren auf Pulverbettbasis
- hohe Temperaturgradienten
 - thermischen Dehnungen im Bauteil
 - Eigenspannungen und Bauteilverzug
- Überschreitung von Toleranzen und Defekte führen zu Ausschuss

1. Einleitung

- FEM-basierte Simulationen des Aufbauprozesses
 - Vorhersage von thermomechanischen Eigenspannungen und Verzug
 - Ziel: "first time right"
 - hoher Bedarf an Validierungen auf experimenteller Basis
- Simulationswerkzeug "Additive Workbench Additive Suite" soll validiert werden
 - auf Basis experimenteller Untersuchungen

2. Simulationsmodell - Ansatz

- "Lumped Layer Approach" von ANSYS
 - Verwendung in ANSYS Workbench Additive Suite (R19.2)
- thermomechanische Simulation (sequentiell)
 - erst Aufbau des thermischen Modells, dann Aufbau des mechanischen Modells

2. Simulationsmodell - Ansatz

• thermische Randbedingungen:

- Werkstoffkennwerte:
 - temperaturabhängig

thermisch	mechanisch	
• Wärmeleitfähigkeit (T)	• E-/Scher-/Kompressionsmodul	
• spezifische Wärmekapazität (T)	(T)	
 Schmelztemperatur 	• Streckgrenze (T)	
	• Poissonzahl (T)	

Dichte (T), thermischer Ausdehnungskoeffizient (T)

3. Experimentelle Prozessuntersuchungen - Hypothese

- Hypothese: "Der simultane Aufbau mehrerer Bauteile beeinflusst das thermomechanische Verhalten und folglich den Verzug"
 - Veränderung der Schichtdauer
 - gegenseitige thermische Beeinflussung der Bauteile

- experimentelle Untersuchung, ob Prozessveränderungen den Verzug von Bauteilen beeinflussen
 - falls Einfluss feststellbar: wie simulativ zu berücksichtigen?

3. Experimentelle Prozessuntersuchungen - Versuchsreihen

50 mm

- Werkstoffe:
 - Ti6Al4V, Edelstahl 316L (1.4404)
- Kantilever (Kragbalken) als Referenzgeometrie

- je Werkstoff drei Versuche:
 - 1. Kantilever ohne weitere Bauteile
 - 2. Kantilever mit weiteren Bauteilen
 - 3. Kantilever ohne weitere Bauteile mit längerer Beschichtungsdauer

3. Experimentelle Prozessuntersuchungen - Verzugsmessung

• Messung:

• Ergebnisse

Kantilever mit Islandbelichtung

3. Experimentelle Prozessuntersuchungen – Folgerung

- Vermutung:
 - kältere Bauteiltemperatur beim Aufschmelzen der nächsten Schicht
 - führt zu größeren lokalen Temperaturgradienten

- Messung der Oberflächentemperaturen der Kantilever
 - mittels Infrarotkamera
 - relativer Vergleich zwischen Versuchen möglich

Kassel 2019

3. Experimentelle Prozessuntersuchungen - Thermografie

- Messung der mittleren Temperaturen der Kantileveroberflächen je Schicht
 - unmittelbar vor der Belichtung je Kantilever ٠
 - Höhenbereiche im Balken •

Kassel 2019

3. Experimentelle Prozessuntersuchungen - Thermografie

- Messung der mittleren Temperaturen der Kantileveroberflächen je Schicht
 - unmittelbar vor der Belichtung je Kantilever ٠
 - Höhenbereiche im Balken •

3. Experimentelle Prozessuntersuchungen - Zwischenfazit

- bei Ti6Al4V erhöht das Hinzufügen weiterer Bauteile den Verzug
 - bekräftigt die Aussage der Hypothese
- bei Versuchen mit 316L kein Einfluss auf den Verzug feststellbar
- niedrigere Bauteiltemperaturen durch Hinzufügen weiterer Bauteile
 - Erhöhung der Temperaturgradienten
- Belichtungsstrategie beeinflusst den Bauteilverzug

4. Validierung der Simulation – verwendete Bauteile

• Kantilever und praxisorientierte Bauteile zur Validierung der Simulation

4. Validierung der Simulation - Kantilever

 Messung des Verzugs in der Simulation:

• Durchtrennen der Stützen:

Entfernen von Elementen

- Verzugscharakteristik stimmt überein
- Abweichungen des absoluten Verzugs

16.–17. Okt 2019 Konaress Palais

4. Validierung der Simulation – Einfluss weiterer Bauteile

- Möglichkeiten, weitere Bauteile simulativ zu Berücksichtigen:
 - 1. Direkter Aufbau
 - 2. Indirekt (über Schichtdauer)
 - 3. Keine Berücksichtigung

• Ergebnisse:

		Werkstoff	
		Ti6Al4V	316L
Berücksichtigung in der Simulation	1. Direkt	7,85	1,61
	2. Indirekt	7,94	1,63
	3. Keine	7,11	1,59
I	Realität	3,19	2,23

Maximalverzug der Kantilever in mm

- korreliert mit den Erkenntnissen aus den Versuchen
- keine Annäherung an realen Verzug

4. Validierung der Simulation – praxisorientierte Bauteile

• Verzugsmessung mittels optischem 3D-Messsytem (GOM ATOS)

4. Validierung der Simulation – praxisorientierte Bauteile

• Verzugsmessung mittels optischem 3D-Messsytem (GOM ATOS)

4. Validierung der Simulation - Sensitivitätsanalyse

- Abweichungen der Simulationsergebnisse von Realität
 - möglicherweise unpassende Werkstoffkennwerte in Simulation
 - Herkunft der Kennwerte unbekannt
- Wärmeleitfähigkeit $\lambda(T)$ und spezifische Wärmekapazität $c_{\rho}(T)$ untersucht
 - aus Literatur: relevante Kennwerte für Simulation
- Kantilever mit 316L verwendet

- Ergebnisse:
 - Fertigung und Vermessung der vorverformten Geometrien mit 316L

- Ergebnisse:
 - Fertigung und Vermessung der vorverformten Geometrien mit 316L

• Ergebnisse:

 Fertigung und Vermessung der vorverformten Geometrien mit 316L

assel 2019

5. Fazit

Experimentelle Untersuchungen

- simultaner Aufbau weiterer Bauteile beeinflusst den Bauteilverzug
 - abhängig vom Werkstoff
- Belichtungsstrategie beeinflusst den Bauteilverzug

Validierung der Simulation

- Verzugscharakteristika können simulativ abgebildet werden
 - jedoch teils hohe Abweichung des absoluten Verzugs
- Einfluss des Aufbaus mehrerer Bauteile ebenfalls simulativ erfasst
- simulationsbasierte Verzugskompensierung validiert

6. Ausblick

Experimentelle Untersuchungen

- Variation der Anlagen, Werkstoffe, Prozessparameter, Bauteile
- Wärmeflüsse zwischen Bauteilen während des Aufbauprozesses ermitteln
- temperaturabhängige Werkstoffkennwerte messen und validieren

Validierung der Simulation

- Sensitivitätsanalyse mit weiteren Werkstoffkennwerten
- Berücksichtigung der Belichtungsstrategie
- Wirtschaftlichkeitsbetrachtung