

Simulation ist mehr als Software®

An integrated Workflow for the Simulation-Driven Development of Electric Motors and Generators

René Fuger CADFEM (Austria) GmbH

From the Idea to the Operation

Design

Analysis

Operation

Motivation

New challenges in the development of electric drive systems

- Application specific requirements getting more restricted
- Faster response times to customer inquires and shorter development times
- Different motor designs available and more competitors on the market
- System performance map required during tendering stage

Simulation Depth

Simulation Depth

Simulation Requirements

Preliminary Design

Preliminary Design

Objectives

- Investigation of the possibilities
- Fast evaluation of different designs
- Coupled preliminary electromagnetic and thermal analysis
- Fast evaluation of performance maps and duty circles

Preliminary Design

Objectives

- Investigation of the possibilities
- Fast evaluation of different designs
- Coupled preliminary electromagnetic and thermal analysis
- Fast evaluation of performance maps and duty circles

Requirements

- Software to evaluate fast and accurate electromagnetic and thermal behaviour
- Capability for preliminary optimization and sensitivity analysis
- Automated workflows for data exchange

Motor-CAD Software

Motor-CAD EMag, Therm and Lab modules are developed to enable fast and accurate analysis in one integrated software

- EMag: A fast 2D finite element module for accurate electromagnetic and electrical performance predictions.
- Therm: Combines a lumped circuit and finite element thermal calculation for optimising the cooling system of a machine.
- Lab: Provides efficiency mapping and duty cycle / drive cycle transient outputs within minutes

Written by motor design experts in the language of the motor designers so very easy to use.

How to use Motor-CAD

- Extensive range of parameterised templates
 - Design Variables, Winding Type, Cooling Type, ...
- Simple input masks in the form of tables
 - · Geometry, Winding, Materials, ...
- Automatic setup for different simulation tasks
 - Steady-State & Transient Thermal Analysis
 - Performance Tests: Single Operating Point, Open Circuit, On Load, Transient, ...
- Fast and accurate solver technique
 - Fastest FEA electromagnetic solver (assembly code)
 - FEA thermal solver for windings
- Coupled Analyses
 - Easy switching between electromagnetic and thermal setup
- Enhanced capabilities
 - Scripting, Smart loss calculation algorithms, Manufacturing data built into models
- All in one GUI

Data Evaluation

Automation of Workflow and Optimisation

- Graphical programming, based on templates, wizard-based derivatives
- Post-Processing: visualization, main info at a glance, investigation when needed
- State-of-the-art sensitivity analysis + MOP + Robust Design Optimization

© Dynardo GmbH

fully automatic

- Integrated Workflows → optiSLang connects
- Investigative research → gain insight & understanding
- Establish workflows → benefit from your (codified) competence

© Dynardo GmbH

Component Development

Objectives

- · Detail analyses of the electric drive
- Investigation of transient or three dimensional effects on the electromagnetic behaviour
- Coupled and uncoupled structural, thermal and power electronics simulations
- Generating deeper physical understanding and there dependence on the electric drive system
- Acoustics simulations (NVH)

13

Component Development

Objectives

- Detail analyses of the electric drive
- Investigation of transient or three dimensional effects on the electromagnetic behaviour
- Coupled and uncoupled structural, thermal and power electronics simulations
- Generating deeper physical understanding and there dependence on the electric drive system
- Acoustics simulations (NVH)

Requirements

- High-end simulation tools for the different physical domains
- Easy coupling between the results from different domains (Simulation Platform)
- Sensitivity and robustness analysis over different tools and many parameters
- Workflow automation and file data handling

Simulation Platform

MAXWELL

- Electromagnetic Fields
- Induced Voltage
- Induction Matrix
- Forces & Torques
- Losses

CFD

- Heat transfer Coefficient
- Temperature Distribution
- Flow Characteristics

WORKBENCH

- Simple Exchange of Data
- Connecting by Drag and Drop
- All Physics Domain in one GUI
- Coupled Optimisation

Twin Builder

- Control Parameters
- System Behaviour
- Power Electronics

MECHANICAL

- Stress, Stiffness and Deformation
- Eigenmode
- Temperature Distribution

Electronic-Electromagnetic Coupling

- Influences of power electronics
 - Sinus vs. PWM excitation
 - Additional Losses
- Control loops
 - Optimization

15 Time [ms]

Electromagnetic-Thermal Coupling

Why coupling?

Electromagnetic-Thermal Coupling

The losses obtained by EM-Simulation are used as realistic loads.

- Thermal analysis without fluid dynamics
 - Conduction, diffusion, advection, convection and radiation
 - Special elements for advection
 - Solves faster due to smaller project size
 - Convection has to be defined by boundary condition
 - Thermal Heat Coefficients has to be taken from literature
- Thermal analysis with fluid dynamics
 - Solves for heat transfer coefficient
 - Higher accuracy for fluid problems
 - Setting up of the model is more complex

Electromagnetic-Structual Coupling

Automated load transfer from magnetic field analysis

- Uncoupled or Coupled Simulations
- Static Simulation
 - Stresses (E-Steel, Housing)
 - Deformation
 - Resonance Frequencies
- Dynamic Simulation
 - Harmonic response based on magnetic forces
- Transfer of transient magnetic loads to frequency domain by DFT

Harmonic Response

CADFEM ANSYS Extension - Electric Drive Acoustics inside ANSYS

System Engineering

Objectives

- Analysis and optimization of a system without extensive coupled FEM simulation
- Generating accurate behavior models from the component analysis
- Implementation of third party behavior models
- Fast evaluation of performance maps and duty circles on a system level

System Engineering

Objectives

- Analysis and optimization of a system without extensive coupled FEM simulation
- Generating accurate behavior models from the component analysis
- Implementation of third party behavior models
- Fast evaluation of performance maps and duty circles on a system level

Requirements

- Physical based system simulator with the possibility to generate State Space Model, Reduced Order Models, MOP, ...
- Implementation of 3rd party models
- Optimization, sensitivity and robustness analyses

CADFEM

Twin Builder (Simplorer)

CADFEM ANSYS Extension – Model Reduction inside ANSYS

Model Reduction in ANSYS Mechanical with CADFEM MOR-ACT

Summary - Workflow Overview

Summary

- An integrated workflow for the simulation-driven development of electric motors was presented.
- The importance of an compact and fast simulation tool chain for the preliminary design phase was highlighted.
- Easy coupling of different physical domains is important to get realistic loads and accurate results.
- The development process have to be accompanied by optimization and sensitivity studies.
- Parts of the workflow was already implementation in the development process from our customers

Simulation ist mehr als Software®

Simulation macht vieles möglich

Gemeinsam holen wir das Beste heraus

