End Winding Impedance Calculation for Motor-CAD Usage Comparison of Four Different Approaches

Technologietag E-Motoren Juni 2020 Martin Hanke CADFEM GmbH, Berlin, Germany

CADFEM®

Problem Description Demo Problem: Short PMSM, 6 Pole Pairs, 72 Slots, Hairpin Winding

End winding's influences shall be accounted for in 2D simulations, special case hair pin. Assume no iron in the end winding region. Approximate flux parallel at the end of active region.

Contents Comparison of Four Different Approaches

- 1) Inductance from Static Maxwell Analysis, T- Ω
- 2) Impedance from Harmonic Mechanical, A- Φ
- 3) Impedance from Q3D, Method of Moments
- 4) Static Inductance from Biot-Savart's Law

Summary

1) Inductance from Static Maxwell Analysis, T-Ω **CADFEM**[®] Model

1/6 sector model, wires and regionPeriodic boundary conditionsWire edge fillets replaced by chamfers275641 tetrahedra

1) Inductance from Static Maxwell Analysis, T-Ω **CADFEM** Solution

90' mesh time15' solution time60' matrix time

Current density shown from phase currents 1A, 2A, 3A

1) Inductance from Static Maxwell Analysis, T-Ω Results

Save

roject

Name Name Type Select

4

Inductance in nH from blocks of induction matrix:

981.3044	-313.2853	-313.2927
-313.2853	980.9968	-313.2863
-313.2927	-313.2863	980.8626

lectronics Desito	op 2019 R3.7 -	Inductance	Sector C	hamler_19	3 - Maxwel	BDDesign1	- 3D Mode	er souve	D - [1nduct	Lance_Sector	Chantler_				
t View Project	Draw Modeler	Maxwell 3	D Tools V	Mindow H	sp.										
ut 🧐 Undo	Solutions:	Inductance	_Sector_Cl	hamfer_19	3 - Maxwell	3DDesign1									
opy 🍋 Redo	Simulation:	Setup1			- La	stAdaptive			•						
ste 🗙 Delete	Design Variatio	-													
Draw	Design Victoria	in Isaoui	* TA: Stom2*	ZA: StomJ*	. 36.										
a ×	Profile Conve	ergence Fo	rce Torque	Matrix Me	sh Statistics	1									
ector_C	1000000000000000														
sign1	Parameter	c Matrix1		¥ 7	уре:	Indu	uctance		•						
ients	Dente	1		-	ductance I In		E	H.	-						
- 1	Pass	12		•	operance on		1	r 1							
										PostProcesse	d				
5															
a	View [P	ormati Expo	9												
		Current 1	Current 2	Current 3	Current 4	Current 5	Current 6	Current 7	Current 8	Current2 1	Current2 2	Current2 3	Current2 4	Current2 5	1
8	Current_1	56.672	28.865	-2.5143	4.4357	27.051	20.352	-2.9145	-3.9461	-17.061	-10.962	7.1636	10.96	-13.665	Ì
	Current_2	28.865	56.681	-4.4353	-2.513	20.438	27.046	-3.9542	-2.9135	-28.864	-17.059	4.4325	7.1619	-20.354	
	Current_3	-2.5143	-4.4353	56.659	28.858	-2.9141	-3.9468	27.05	20.355	7.1628	10.96	-17.059	-10.959	6.0707	
	Current_4	-4.4357	-2.513	28.858	56.661	-3.9533	-2.9149	20.437	27.05	4.4327	7.1628	-28.867	-17.058	3.9458	
	Current_5	27.051	20.438	-2.9141	-3.9533	57.096	27.725	-1.947	-3.9374	-13.682	-9.1402	6.0797	9.1445	-15.886	
	Current_6	20.352	27.046	-3.9468	-2.9149	27.725	57.091	-3.9407	-1.9475	-20.438	-13.682	3.9527	6.0797	-27.728	
2	Current_7	-2.9145	-3.9542	27.05	20:437	-1.947	-3.9407	57.095	27.72	6.081	9.1459	-13.682	-9.1393	6.5148	
×	Current_8	-3.9461	-2.9135	20.355	27.05	-3.9374	-1.9475	27.72	57.117	3.9531	6.0805	-20.439	-13.681	3.9381	
F	Current2_1	-17.061	-28.864	7,1628	4.4327	-13.682	-20.438	6.081	3.9531	56.643	28.863	-2.5147	-4,4346	27.047	
- III	Current2_2	-10.962	-17.059	10.96	7.1628	-9.1402	-13.682	9.1459	6.0805	28.863	56.64	-4.4364	-2.5145	20.438	
- 11	Current2_3	7.1636	4.4325	-17.059	-28.867	6.0797	3.9527	-13.682	-20.439	-2.5147	-4.4364	56.645	28.86	-2.9142	
- 11	Current2_4	10.96	7.1619	-10.959	-17.058	9.1445	6.0797	-9.1393	-13.681	-4.4346	-2.5145	28.86	56.637	-3.953	
	Current2_5	-13.000	13.665	0.0707	5.9450	10.000	.15 097	0.0140	5 3 3 5 6 1	20.047	20,430	2.0142	-3.953	07,009	
	Cument2_6	6.0713	3 0459	-13.664	-20.354	6 6136	3 6382	15 227	.37 732	-20.303	.1 0537	27.049	20438	-1 0493	
	Cuttent2 8	91411	6.0708	-9.1457	-13.665	10.037	6 5145	-10.037	-15.886	-3.9479	-29147	20.353	27.051	3 9394	
	Current3 1	7.1655	10.961	-17 058	-10.959	6.0717	9.1402	-13.664	-9.1454	-17.059	-28.867	7.1641	4.434	-13.682	
	Current3 2	4.4365	7.1636	-28.85	-17.055	3.9467	6.071	-20.352	-13.664	-10.959	-17.058	10.959	7.1615	-9.1396	
	Current3 3	-17.058	-10.958	7.1623	10.959	-13.663	-9.1445	6.0696	9.1382	7.1631	4.4345	-17.057	-28.863	6.0803	
	Current3_4	-28.865	-17.057	4.4341	7.1635	-20.353	-13.663	3.9459	6.0701	10.96	7.1631	-10.959	-17.057	9.1454	
	Current3_5	6.0814	9.1457	-13.682	-9.1393	6.5148	10.038	-15.887	-10.037	-13.664	-20.353	6.0718	3.9467	-15.886	
and a	Current3_6	3.9538	6.0806	-20.439	-13.681	3.939	6.5142	-27.729	-15.885	-9.1448	-13.663	9.1409	5.071	-10.037	

2) Impedance from Harmonic Mechanical, A-Φ Theory

Harmonic current 1A is fed into winding k Time integrated voltage V is measured at winding j

 $V(t) = \int U(t')dt'$ $V = \frac{U}{i\omega}$ $U = (R + i\omega L) \cdot I$ $i\omega(V_{Re} + iV_{Im}) = (R + i\omega L) \cdot I$

Real part of time integrated voltage gives inductance.

2) Impedance from Harmonic Mechanical, A-Φ Model, Result

Periodic sector

Electrical periodic and inner terminals with APDL 419605 elements: solid236/237 magnetic edge 10' elapsed time for 3 load steps

10 Hz:

0.988831E-06	-0.328137E-06	-0.328223E-06
-0.328137E-06	0.989335E-06	-0.328096E-06
-0.328223E-06	-0.328097E-06	0.988927E-06

1000 Hz:

0.986678E-06	-0.327491E-06	-0.327564E-06
-0.327491E-06	0.987071E-06	-0.327471E-06
-0.327564E-06	-0.327471E-06	0.986721E-06

M. Hanke: End Winding Impedance Calculation

9

3) Impedance from Q3D, Method of Moments Model

3) Impedance from Q3D, Method of Moments Result

		1	2	3	4	5	6	7	8	9 1	0 11	l 12	13	14	15	16	17	18	19	20	21	22	23	24		А	В	С
Result is full inductance	1	420	254	182 1	143 1	119 1	.02	90 10)2 11	9 14	3 182	2 254	255	214	172	142	122	107	101	107	122	142	172 2	14		1	0	0
	2	102	420	254 1 420 2	182 1	1 43 1	19 1	102 9	$\frac{90}{2}$	$\frac{11}{2}$	9 143	3 182	214	255	214	1/2	142	122	107	101	107	122	142 1	/2		1	0	0
Matrix after 98'	4	102	182	420 2 254 4	119 2	182 1 254 1	82 1	43 11	9 10	0 10. 02 91	2 119	9 143 2 119	1/2	172	255	214	214	142 172	122	107	101	107	107 1	42 22		0	0	-1
Math And 60	5	119	143	182 2	254 4	120 2	254 1	182 14	3 11	9 10	2 90	0 102	122	142	172	214	255	214	172	142	122	107	101 1	07		0	1	0
	6	102	119	143 1	182 2	254 4	20 2	254 18	32 14	3 11	9 102	2 90	107	122	142	172	214	255	214	172	142	122	107 1	01		0	1	0
	7	90	102	119 1	143	182 2	254 4	120 25	64 18	32 14	3 119	9 102	101	107	122	142	172	214	255	214	172	142	122 1	07		-1	0	0
Projection with winding	8	102	90	102 1	119 1	143	.82 2	254 42	20 25	64 18	2 144	119	107	101	107	122	142	172	214	255	214	172	142 1	22		-1	0	0
r ojoodon mar maang	9	119	102	90 1	102 1	119 1	.43 1	182 25	54 42	20 25	4 182	2 143	122	107	101	107	122	142	172	214	255	214	172 1	42		0	0	1
number matrices give	10	143	119	102	90 1	00 1	19 1	10 1	32 25	4 41	9 254	182	142	122	107	101	107	122	142	1/2	214 172	255	214 1	12		0	0	1
<u> </u>	12	254	143	143 1	110 1	90 1	90 1	102 11	14 18 0 14	2 23	4 420 2 254	J 254 1 420	214	142	142	107	101	107	107	14Z	142	214 172	255 Z	55		0	-1	0
winding inductance	13	255	214	172 1	142 1	122 1	07 1	101 10	07 12	2 14	2 172	2 214	450	274	200	161	136	118	107	118	136	161	200 2	74		1	0	0
	14	214	255	214 1	172 1	142 1	22 1	107 10)1 10	07 12	2 142	2 172	274	450	274	200	161	136	118	105	118	136	161 2	00		1	0	0
	15	172	214	255 2	214 1	172 1	.42 1	122 10	07 10	10	7 122	2 142	200	274	450	274	200	161	136	118	105	118	136 1	61		0	0	-1
	16	142	172	214 2	255 2	214 1	.72 1	12	22 10	07 10	1 107	7 122	161	200	274	450	274	200	161	136	118	105	118 1	36		0	0	-1
Inductance in nH	17	122	142	172 2	214 2	255 2	214 1	172 14	2 12	2 10	7 101	l 107	136	161	200	274	450	274	200	161	136	118	105 1	18		0	1	0
	18	107	122	142 1	172 2	214 2	255 2	214 17	2 14	2 12	2 107	7 100	118	136	161	200	274	450	274	200	161	136	118 1	05		0	1	0
per sector:	19	101	107	122 1	142 1	1/2 2	214 2	255 21	4 1/	2 14	2 122	2 107	105	118	136	161	200	2/4	450	274	200	161	136 1	18		-1	0	0
·	20	107	101	107 1	107 1	122 1	12 2	214 Z:	1 25	4 17.	2 142 4 173	2 122	118	112	118	118	101	200	274	450 274	274 450	200	200 1	30 61		-1	0	1
1003.5 -325.6 -325.3	21	142	122	107 1		107 1	22 1	42 17	72 21	4 25	5 214	172	161	136	118	105	118	136	161	200	-50 274	450	274 2	00		0	0	1
-325.6 1003.6 -325.3	23	172	142	122 1	107 1	101 1	.07 1	22 14	2 17	2 21	4 255	5 214	200	161	136	118	105	118	136	161	200	274	450 2	74		0	-1	0
-325.3 -325.3 1002.7	24	214	172	142 1	122 1	107	.01 1	107 12	22 14	2 17	2 214	1 255	274	200	161	136	118	105	118	136	161	200	274 4	50		0	-1	0
	Α	1	1	0	0	0	0	-1	-1	0	0 0	0 0	1	1	0	0	0	0	-1	-1	0	0	0	0	-	6020.8	-1954	-1952
	В	0	0	0	0	1	1	0	0	0	0 -1	l -1	0	0	0	0	1	1	0	0	0	0	-1	-1	W'*L*W	-1953.6	6021.6	-1952
	C	0	0	-1	-1	0	0	0	0	1	1 0	0 0	0	0	-1	-1	0	0	0	0	1	1	0	0		-1952	-1952	6016

M. Hanke: End Winding Impedance Calculation

3) Impedance from Q3D, Method of Moments Frequency Dependence

© CADFEM 2020

4) Static Inductance from Biot-Savart's Law Theory

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \iiint \frac{\vec{j}(\vec{r})}{\left|\vec{r} - \vec{r'}\right|} \cdot d^3 \vec{r'}$$

executed over all periodic sectors is solution of (

 $\Delta \vec{A}(\vec{r}) = -\mu_0 \cdot \vec{j}(\vec{r}).$

If $\overrightarrow{j_k}$ is the turn density vector for load case k coming from 1A current in winding k and $\overrightarrow{A_l}$ is the vector potential from excited winding l then we find the flux linkage matrix element:

$$\Phi_{kl} = \iiint \vec{j_k} \cdot \vec{A_l} \cdot d^3 \vec{r}$$

by integration over winding k only.

4) Static Inductance from Biot-Savart's Law Numerics in Ansys Mechanical

39801 elements: solid232 current conduction

Solve three load cases: 24" elapsed time

Postprocessing: 18' to find one row of static flux linkage matrix in Wb:

MY_	FLUX11	=	0.9884747759E-06
MY	FLUX12	=	-0.3249750294E-06
MY_	FLUX13	=	-0.3249925750E-06

Summary: Inductance Calculation Methods

Method	Pro	Con	Best
Maxwell T-Ω	Easy to use	Simplified geometry Singly connected conductors Long meshing time	Easy to use
Mechanical A-Φ	Fast Inflation mesh for skin effect	Scripting needed	Fastest
Q3D MoM	Mesh for conductors only Frequency dependence Direct circuit export	Full geometry Frequency interpolation	Most convenient
Mechanical Biot-Savart	Mesh for conductors only Sector geometry	Scripting needed Integration for vector potential takes long time DC only	Easiestmesh