

Electrification: Need for innovative solutions in electrical machines for automotive traction units

Mircea Popescu, Motor Design Ltd, UK

26 June 2020, CADFEM Technology Day

- About MDL
- Electrified Systems
- Electrical Machines Innovation (Materials)
- Electrical Machines Innovation (Designs)

Software developers: Ansys Motor-CAD

- Developers of Ansys Motor-CAD world-leading tool for the design and analysis of electric motors.
- High level of customer support and engineering know-how.
- Developed with expert electric machine designers.
- Consultancy
 - Design, analysis & training.
 - Led by motor design experts with significant industry and academic experience.
- Research
 - Involved in collaborative government/EU-funded research projects.
 - Collaborate with Universities worldwide to develop electric machine modelling techniques and create validation data.

Customers across 6 industry sectors Automotive, aerospace, rail, renewables, industrial & appliances. 43% of the team are design engineers
30% of the team are software developers
47% of the team have a PhD*

Developing Motor-CAD software since

MDL has OEM software partnership with

©2020 Motor Design Ltd. I Confidential

Electric Machine Design Tool

Rapid multiphysics design tool providing analysis across the full torque/speed operating range

Enables:

- Comprehensive design space exploration
- Better design and topology decisions
- More optimised designs
- Complete multiphysics evaluation of design candidates against the full specification
- Reduced risk of costly problems in the later development stages.

DESIGN

ANALYSIS

OPERATION

©2020 Motor Design Ltd. I Confidential

Electric Machine Design Tool

Rapid multiphysics design tool providing analysis across the full torque/speed operating range Specialist physics-based numerical tools for multiphysics analysis

- Detailed physics based numerical simulation
- Coupled specialist tools for multiphysics analysis

DESIGN

ANALYSIS

OPERATION

- Covers all typical types of radial flux rotating electric machines.
- Motor Types: ٠
 - Brushless permanent magnet (inner & outer rotor)
 - Induction
 - Synchronous reluctance
 - Switched reluctance
 - Synchronous wound field
 - Permanent magnet DC
 - Single phase induction.
- Extensive range of parametrised templates & geometries.

Interior PM machine design

machine design

Switched reluctance machine design

Induction machine design

Challenges of Designing Electrified Systems

- **Development Costs** prototyping & physical testing are expensive
- Complexity multiple physical domains, HW/SW integration, multiple scales
- Energy Efficiency a 1% improvement in energy usage is significant
- **Reliability** how does the system respond in the event of faults?
- Certification for Safety & Electromagnetic Compatibility (EMC)

Courtesy of Ansys © 2020

Technology Drivers for Aerospace Electrification

Electric Machines

Power Conversion

Energy Storage

Motors Generators

AC/DC Converters (TRUs, ATRUs) DC/DC Converters Chargers

Courtesy of Ansys © 2020

Technical Challenges for Electrical Machines Design

System Requirements in Aerospace Applications

Technical challenges associated with propulsion in aerospace are significant including **safety**, **mass and performance**.

Particular safety challenges include:

High availability for motoring or generating functions.

Bi-directional power for 'always on' permanent magnet machines. 1 x 10^-9 for fire.

Typical requirements:

- Power between 20 kW to 2MW
- Voltages from 600V to 1000V, 3kV ongoing
- Motoring and generating
- Air cooling

Fault Redundancy

- Multiplex system, comprising multiple nominal balanced three-phase motor drive units
- Motor units share a common housing and a common output shaft
- Motor units are electromagnetically independent
- Minimal thermal interaction between motor units

View Datasheet

Electric Steel - > Cobalt iron

- Higher magnetic permeability
- Benefit in achieving higher peak torque (~ 20 - 25%) in the same volume and power supply
- Designs to be done with limited field weakening region, i.e. base speed/max speed ratio < 1
- Requires careful processing (annealing)
- Carpenter
- VAC

Hiperco® 50A Alloy

Typical D.C. Magnetization Curves—Hiperco 50A Alloy vs. Electrical Iron

Source: Carpenter Specialty Alloys.

- Electrical Steel > Silicon • iron more silicon and thinner laminations to reduce iron losses
- Due to lower losses, become ulletpreferred solution in high power density traction motors (Ampere, Canoo, Bolt)

at 60 Hz

- Arnon 4, 5 and 7 ullet
- Cogent Hi-Lite: NO10 to NO35
- JFE Steel 10JNEX ullet

Arnon 5 and 7 Core Loss Non-Grain Oriented, 5 and 7 mil Fe-Si

Source: Arnold Magnetics

- Square symbol denotes CoFe steel type
- Diamond symbol denotes SiFe steel type.
- M270-35A and M235-35A are common 0.35-mm thickness SiFe grades with a typical yield strength of around 350MPa and 450MPa, respectively.
- SiFe thinner grades than 0.35mm, such as NO30 and NO20, which have 0.30mm and 0.20mm respectively thickness.

		INCREASED AMPACITY	ELECTRICAL CONDUCTIVITY	THERMAL CONDUCTIVITY	CORROSION PROTECTION	ADHESION STRENGTH	FLEXIBLE	EASINESS OF APPLICATION	FLAME RESISTANCE
New materials – copper bars coated with nano-carbon	THERMAL	5	0	5	3	5	4	5	4
	PLUS	4	5	4	3	5	5	5	4
	PROTECT	4	0	4	5	5	2	3	4
	FLEX	4	0	4	3	5	5	3	4

BEST PERFORMANCE	5	4	3	2	1	0	POOR PERFORMANCE OR LACK OF PROPERTY
---------------------	---	---	---	---	---	---	---

AMPACITY Cu @ 200°C

Conductor size 22 x 0.7mm

Coated bus bars

Hairpin Winding

Tecnomatic

Additive Manufactured Coils

AM CuCrZr, insulated,

AM AlSiMg, uninsulated,

AM CuCrZr shaped profile electrical machine winding,

APM 200 - Equipmake

Flux density plots for APM 200

Core loss density for APM 200

Laminated Magnets

- Increases efficiency through further reduction of eddy currents
- Thinnest available insulating layers <20 microns for maximum energy density
- Performance at temperatures up to 200° C
- Magnet layers from ½ mm and up in custom shapes/sizes to suit your design
- Developed to solve a customer need
- Can use SmCo or GBD Neo

Arnold Magnetics

Laminated Magnets

Magnet loss density with monolithic magnets (1 segment/pole)

Magnet loss density with laminated magnets (3 segments/pole)

Carbon Fibre Sleeving

Arnold Magnetics

Carbon Fibre Sleeving

Flux density plots for high-speed generator (120krpm)

Magnetic Loss density plots for high-speed generator (120krpm)

Air-gap winding composite development

Glass fiber reinforcement (x, y directions)

- Composite matrix of
 - 1.7 mm dia. aluminium wires
 - 0.7 mm reinforcing glass fiber rods
 - 1.25 mm Kevlar thread weave
- Structure vacuum impregnated with a high temperature grade of epoxy and cured
- First sample achieved a 27% conductor fill

Sleeve flooded stator cooling

- a stator sleeve is introduced in the airgap to isolate the stator from the rotor.
- Stator is flooded with oil, passing through the cooling ducts at slot opening and stator back iron
- intensive direct cooling to the machine but at the same time could prevent any liquid from entering the airgap.

Motor Design Limited

Oil spray cooling

- Housing water jacket is a common cooling solution.
- Copper loss at end winding can be substantial.
- Heat flow path of end winding is relatively longer when compared to active winding.
- Hot spot is usually located at the end winding.
- Improvement solution, the end winding can be cooled by oil spray.
- Direct cooling method.
- An active cooling that gives very high convective heat transfer coefficient (HTC).

For example, HTC can reach up to about 10,000 W/m²/K at Jet Impingement Velocity of 10 m/s by using automatic transmission fluid (ATF), Bennion and Moreno [2015]

www.motor-design.com

Oil spray nozzles:

- Oil spray spray angle > 0°
- Oil jet concentrated jet with spray angle of 0°
- Oil mist
- Oil droplets

Electrical Machines Innovation

Oil spray cooling

For oil spray cooling, oil is gone through two processes:

- 1) Oil is atomised and breaks into small droplets;
- 2) Oil drops are directed onto a target surface.

Oil spray cooling

- To remove the undesired heat from electrical machines, the cooling mechanism relies ultimately on the convective cooling.
- provide the highest convective heat transfer coefficient.
- up to about 10,000 W/m²/K at nozzle hole flow velocity of 10 m/s by using automatic transmission fluid (ATF)
- direct oil cooling as it cools heat generating components directly (stator/rotor end winding, rotor end ring, magnet)

- Air Natural Convection
 h = 5-10 W/(m².C)
- Air Forced Convection
 - h =10-300 W/(m².C)
- Liquid Forced Convection
 - h = 50-20000 W/(m².C)

[K. Bennion and G. Moreno, "Convective heat transfer coefficients of automatic transmission fluid jets with implications for electric machine thermal management," in *ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems (InterPACK2015)*, 2015, pp. 1–9.

www.motor-design.com

Electrical Machines Innovation

Oil spray cooling

- ATF is supplied from oil pump to cool the stator and coil end winding through the inner pipe.
- The oil passed through rotor core to cool the magnet actively
- Thus, the motor is cooled efficiently and increased the current density up to 58% compared to Toyota Prius 2009 motor.

Toyota Prius 2017

S. Sano, T. Yashiro, K. Takizawa, and T. Mizutani, "Development of New Motor for Compact-Class Hybrid Vehicles," *World Electr. Veh. J.*, vol. 8, no. 2, pp. 443–449, 2016.

Impregnation Materials

TABLE I COMPARISON BETWEEN THE IMPREGNATION MATERIALS STUDIED

Materials	Varnish	Epoxylite	SbTCM
Thermal conductivity (W/mk)	≈0.25	≈ 0.85	3.20
Dielectric strength (kV/mm)	≈ 80	≈ 20	≈ 10
Volume resistivity at $25^{\circ}C$ ($\Omega \cdot cm$)	$> 10^{15}$	$> 10^{14}$	$> 10^{14}$
Viscosity (Pa·s)	-	3.5	25
Price (Pu)	1.0	≈ 2.0	≈ 4.0

S. Nategh, A. Krings, O. Wallmark, and M. Leksell, "Evaluation of impregnation materials for thermal management of liquid-cooled electric machines," IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 5956–5965, 2014.

- impact of the thermal conductivity of ۲ different potting materials
- high-performance liquid-cooled electric ۲ machines
- k varies from 0.25 to 3.2 W/mK ۲

60

3.2

3.4

3.6

Fig. 14. Comparison between the hot spot temperatures of the machines. The inlet coolant flow rate is 3.0 L/min. The solid and dashed lines represent the experimental and simulation results, respectively.

3.8 Current (A) 4.2

4.4

Cooling pipes system

Motor Design Limited

TABLE I LIST OF POTENTIAL COOLING PIPE MATERIALS AND THEIR PROPERTIES

Material	σ [MS/m]	<i>9_{Мах}</i> [°С]	k _{pipe} [W/K/m]	E _{pipe} [GPa]	t _{pipe} [mm]	cf [-]
PVC	Diel.	100	0.19	2.4-4.1	2	0.2
ABS	Diel.	100	0.17	2-2.6	2	0.2
PTFE	Diel.	260	0.25	0.4-1.8	2	0.25
Silicone Rubber	Diel.	200	1.22	0.001- 0.05	0.5	0.5
Nylon	Diel.	70	0.25	2-4	2	0.2
Copper (square)	58.5	>500	385	117	2	0.15
Copper (round)	58.5	>500	385	117	1	0.1
Stainless Steel	1.35	>500	12-45	190- 203	1	0.1
Aluminium	36.9	>500	204	69	1	0.1
Ceramic	Diel.	>500	5-15	360	1	0.1
Glass	Diel.	>500	1.05	50-90	2	0.1
Carbon Fibre	Diel.	100	5 - 7	150	1	0.1

MADONNA *et al.*: IMPROVED THERMAL MANAGEMENT AND ANALYSIS FOR STATOR END-WINDINGS OF ELECTRICAL MACHINES, Trans. On Ind Electronics, 2018

Motor Design Limited

Through slot/conductors liquid cooling

Power traction EV – liquid and forced air cooled motor

P. Lindh *et al.*, "Direct liquid cooling method verified with an axial flux permanent-magnet traction machine prototype," *IEEE Trans. Ind. Electron.* 2017.

HEAT EXTRACTION THROUGH CONVECTION

Power traction EV – liquid and forced air cooled motor

Power traction: BPM liquid cooled stator package and rotor shaft (Fraunhoffer)

Design evolution

FY17 Accomplishments - Prius Machine Design Trends

~6.37" Rotor O.D. and ~10.6" Stator O.D.

2002 Prius - 3.5" stack 2004 Prius - 3.3" stack 33 kW, 274VDC, 6000 RPM

50kW, 500VDC, 6000 RPM

2010 Prius - 2" stack 2017 Prius - 2.4" stack 60kW, 650VDC, 13000 RPM 53kW, 600VDC, 17000 RPM

'02,'04, and '10 stator laminations have very similar OD/ID with 48 slots

~5.53" Rotor O.D.

~8.47" Stator O.D.

Note: speed reducer required for '10 speed level

Increase of voltage, speed, and design quality yielded significant power density (kW/L) and specific power (kW/kg) improvements.

Electrical Machines Innovation

- Prius 2017 Dimensions can be approximated
- Assumed magnet (N42UH) and electrical steel grades (M250-35A)

Shinya Sano, Takahisa Yashiro, Keiji Takizawa, Tatsuhiko Mizutani,

www.motor-design.com

Brushless Permanent Magnet Machines

Dual stator Axial-flux

- Axial separation with 4 electro-magnetically independent stages
- Limited axial thermal interaction between stages
- Four separate rotors on a common shaft

- Circumferential separation with minimal winding mutual coupling
- Thermal interactions via back iron and casing
- Design uses a single shared rotor

Axial-flux machine prototype

CleanSky,

www.eletad.eu

Pre-formed Stator winding

Rotor magnets and carrier

www.motor-design.com

Radial-flux machine prototype

Wound stator (prior to varnishing)

Rotor assembly

CleanSky, www.eletad.eu

www.motor-design.com

Radial-flux machine prototype

Phase coils individually terminated (and instrumented with thermocouples)

CleanSky, www.eletad.eu

Neighbouring coils grouped into four star connected 3-phase motor units

University of BRISTOL

Radial-flux machine prototype

Phase coils individually terminated (and instrumented with thermocouples)

CleanSky, www.eletad.eu

Neighbouring coils grouped into four star connected 3-phase motor units

University of BRISTOL

Radial-flux machine model

Brushless Permanent Magnet Machines

Outer Rotor 6-phase 24 slots 20 poles Outer Rotor 9-phase 18-slots 16-poles

- Circumferential separation with minimal winding mutual coupling
- Thermal interactions via laminated steel and axle
- Design uses propeller hub as rotor casing

Stator coils

Induction Machines

• Design couples via gearbox shaft to propeller axle

Rotor Back IronInnerCRotorR6-phase636 slots350 bars54 poles6

Outer Rotor 6-phase 36 slots 50 bars 6 poles

• Hairpin winding

Laminated Stator

 Thermal interactions via
 Rotor Bars
 Iaminated steel and casing / axle

www.refreedrive.eu

• Design uses propeller hub as rotor casing

Rotòr Bars Stator coils

Switched Reluctance Machine

Laminated Stator

InnerInnerInnerRotorRotor4-phase4-phase10 teeth8 teeth8 poles

- Circumferential separation with minimal winding mutual coupling
- Thermal interactions via laminated steel and casing
- Design uses shaft coupled via gearbox to propeller axle

Motor-CAD

Summary

- Electrical motors for high-performance applications have to comply with:

 High safety factor (fault tolerant operation)
 High power density (low mass)
- Key to potential solutions:

Advanced materials: CoFe, NGO steel, special additive coils, coatings
 Multiplex systems

- Liquid cooling systems
- Various topologies can be used depending on operating range and supply OBrushless PM or Reluctance PM assisted machines
 - $_{\odot}$ Radial and Axial flux
 - $\,\circ\,$ Inner and Outer rotor
 - $\ensuremath{\circ}$ Induction machines
 - $_{\odot}$ Inner and Outer rotor
 - ${\rm \odot}$ Switched reluctance machines
 - $\circ\,$ Inner and Outer rotor

Thank You for Your Attention! Contact Details

Mircea Popescu (mircea.popescu@motor-design.com) Motor Design Ltd 5 Edison Court | Wrexham | LL13 7YT | UK Tel. +44 (0)1691 623305