Back to transient - how to reduce coupled field transient nonlinear models for system level simulations

Hanna Baumgartl
Martin Hanke

Motivation: Process parameter control for inductive hardening

- Process involves interaction of several physical domains:
 - Electromagnetic
 - Thermal
 - Structural (including phase transition, ...)
- Large number of process parameters
- Nonlinear, time depending interaction
- Interaction across several process steps

- Distortion of the components
- Distortion spread highly sensitive to process parameters, material combinations,
- Existing Workflow on field level:
 - Good results, but too slow for systematic variation of parameters
 - Far too slow for online monitoring of process parameters

Induction Hardening of Metals

Current Status: Model Structure

Model Structure:

Major assumptions:

Thermal and electromagnetic model sequentially coupled Empirical material model

Implementation: ANSYS workbench

- quantitative description of progressive (moving inductor) inductive hardening process possible
- description allows to quantify distortion, improve process development, provide basis for reliability assessment

Interaction of physical Domains

Unidirectional coupling

LDREAD UPGEOM

Bidirectional coupling

Field Coupling

- Static interaction: actual temperature distribution gives actual heat generation
- Nonlinear: BH-curve, temperature dependent, position dependent

- Transient behaviour: last time step is start for next
- Linear: PDE sytem with constant coefficients

System simulation ≠ field simulation

Field level:

- Physics represented through:
 - Spatial discretization
 - Large number of distributed results (nodes/elements)
 - 3D
- Coupling:
 - On element / node level (Multiphysics elements)
 - On mesh level (Exchange of elemental/nodal data from domain to domain)
 - → Exchange of field data

System level:

- Physics represented through:
 - Models: Meta / ROM / Analytical
 - Small number of concentrated results
 - 0D

- Coupling:
 - Through terminals (causal or conservative)
 - Averaged or integral data (e.g. remote points integral current / flow)
 - → Exchange of (a few) scalar data

Characterization of spatially distributed quantities

• Temperatures and heat generation rates

$$u(x,t) = \sum c_i(t) \cdot u_i(x)$$

- Approximation through polynomials:
 - Average
 - Averaged slope
 - Averaged curvature
 - ...
- Example: Deformation
- Linear combination of basis deformations
- Generalization: Any orthogonal (orthonormal) basis

$$u(x,t=0.007s)$$

2.16

+1.65 *

+2.07 *

Projection: Determine coefficients

Projection:

- Coefficient = Scalar product of deflection u(x,t) with orthonormal basis vector u_i
- Continuous Projection:

$$c_i(t) = \langle u(x,t), u_i(x) \rangle$$
$$= \int u(x,t) \cdot u_i(x) dx$$

$$u(x,t) = \sum_{i=1}^{n} c_i(t) \cdot u_i(x)$$

$$u(x,t=0.007s)$$

$$=$$

$$2.16 *$$

$$+1.65 *$$

$$+1.65 *$$

$$-\frac{\text{Projection:}}{\text{Coefficient = Scalar product of deflection } u(x,t) \text{ with orthonormal basis vector } u_i(x,t) \text{ with orthonormal basis vector } u_i(x,t) \cdot u_i(x,t) = \int_{-1}^{1} u(x,t) \cdot u_i(x) dx$$

Orthonormal systems

- 1D: Orthogonal polynomials:
 - Legendre/Chebyshev (bounded)
 - Fourier (periodically)

Legendre:

- Defined on an interval [-1,1]
- Defined to construct an orthogonal system:

•
$$\langle P_n, P_m \rangle = \int_{-1}^1 P_n(x) \cdot P_m(x) dx = \delta_{n,m}$$

Norm (length) of each basis vector:

•
$$||P_n(x)||_2 = \sqrt{\int_{-1}^1 P_n(x)^2 dx} = \sqrt{\frac{2}{2n+1}}$$

→Orthonormal basis defined by

$$\frac{P_n(x)}{\|P_n(x)\|} = \frac{P_n(x)}{\sqrt{\frac{2}{2n+1}}}$$

Orthonormal systems

10

- 1D: Orthogonal polynomials:
 - Legendre/Chebyshev (bounded)
 - Fourier (perodically)
- 2D: Orthogonal polynomials
 - Zernike (defined on circle)
 - Spherical harmonics (defined on sphere surface)

© CADFEM 2020

Orthonormal systems

CADFEM®

• 1D: Orthogonal polynomials:

- Legendre/Chebyshev (bounded)
- Fourier (perodically)
- 2D: Orthogonal polynomials
 - Zernike (defined on circle)
 - Spherical harmonics (defined on sphere surface)

• 3D: Modes:

- Structural eigenmodes
- Derived from orthogonalization (Krylov, SVD, MOS, POD,...)

Which part of the solution is in place?

Coefficients of distributed heat generation rates: Orthogonal projection on elements

Domain behaviour and reduction

System response nonlinear stationary:

System response linear dynamic:

- Electromagnetic (periodically transient)
- Teaching: Fitting of computed samples
- Result: Look-up-table, response surface

- Structural, thermal
- Reduction: Modal, Krylov
- Result: State space models (SSM)

Which part of the solution is in place?

Coefficients of distributed heat generation rates: Orthogonal projection on elements

Resulting workflow

Generation of basis vectors Transient temperature distribution

Temperature Distribution During Heating

Orthogonalization of snapshots taken over time

Basis vectors

Time evolution of coefficients:

Systematic approach: Method of snapshots (MOS)

- Wide range of technologically achievable parameters
- Large number of transient simulation results
- Systematic and automatized approach for basis vector generation required
- Method of snapshots:
- Modes constructed based on lagest eigenvalues of covariance matrix

Thesis MOR Inductive Hardening MOS vs SVD

1	import numpy as np
	from numpy import linalg as LA
	import scipy.linalg
	import time
	######################################
6	mat = np.loadtxt('ndtemp m.dat')
	BURRURERRURERRURER SVD BURRURERRURERRURERRURERRURER
8	start SVD = time.clock()
	U, s, Vh = scipy.linalg.svd(mat,False) # Far Compar
	elapsed = time.clock()
	time_elapsed_SVD = 1000*(elapsed - start_SVD)
	naannanaanaanaan POO saasanaanaanaanaanaanaanaan
13	start POD = time.clock()
	mat t=mat.T #transpose matrix
	c=np.dot(mat_t, mat) #covariance matrix
	#%solve eigenvalue problem - only depends on the nu
	w, v = LA.eig(c)
	zeta = np.dot(mat,v) #modes
	for i in range(len(w)):
	zeta[:,i]=zeta[:,i]/LA.norm(zeta[:,i],2) #norma
	elapsed = time.clock()
	time_elapsed_POD = 1000*(elapsed - start_POD)
	############# Comparison with SVD #############
	error modes = LA.norm(zeta-U,2)
	error sigma = s - np.sqrt(w) #compare singular valu
27	np.savetxt('U h.txt', zeta, fmt='%20.12e')
	np.savetxt('s.txt', np.sqrt(w), fmt='%20.12e')

Name	Тур	Größe	Wert
U	float64	(16564, 20)	[[-1.01287986e-03 -1.39089874e-03 1.49612865e-03 2.45471855e-02
Vh	float64	(20, 20)	[[-1.88145700e-01 -1.88145700e-01 -5.89928773e-022.71261021e-01
c	float64	(20, 20)	[[20603280. 20603280. 6465724 29695492. 33603588. 37686187.] [2
error_modes	float64	1	2.073741085710569
error_sigma	float64	(20,)	[-7.27595761e-12 -1.87583282e-12 7.74491582e-121.03870318e+00
mat	float64	(16564, 20)	[[5. 5. 2 7. 7. 8.] [1. 1. 1 2. 2. 2.]
mat_t	float64	(20, 16564)	[[5. 1. 3 0. 0. 0.] [5. 1. 3 0. 0. 0.]
s	float64	(20,)	[2.41216749e+04 3.84506805e+02 8.64668825e+01 1.90984829e+01 1.86
time_elapsed_POD	float	1	3.638499999938827
time_elapsed_SVD	float	1	28.66559999996516
v	float64	(20, 20)	[[-0.1881457
W	float64	(20,)	[5.81855199e+08 1.47845483e+05 7.47652177e+03 4.05506265e+02 4.14
zeta	float64	(16564, 20)	[[-0.00101288 0.0013909 0.00149613 0.02024843 -0.00212133 -0

Method	Complexity (flops)	
SVD	$O(n^2m + nm^2 + m^3)$	
MOS	$O(nm^2 + rnm + m^3)$	

Reference: Wang, Zhu & Mcbee, Brian & Iliescu, Traian. (2015). Approximate Partitioned Method of Snapshots for POD. Journal of Computational and Applied Mathematics. 10.1016/j.cam.2015.11.023.

ROM Generation: Load vectors == modes

Two step reduction process:

- Reduction of field distribution
 - DOF characterized by a small set of functions / basis vectors
- Reduction of bulk matrices
- Projection onto Krylov Subspace
 - Load vectors: Linear combination of basis vectors
 - Description of dynamic relation between linear combination of heat generation basis vectors and temperature basis vectors

Which part of the solution is in place?

Coefficients of distributed heat generation rates: Orthogonal projection on elements

Determination of TEMP and HGEN coefficients

Response surface generation

CADFEM

- Inputs:
 - Current
 - Inductor position
 - TEMP coefficients
- Outputs:
 - HGEN coefficients

- Approximation Method: Kriging
- Quality of response surface is influenced by:
 - Number of Modes
 - Number of samples
 - Space filling of samples: Parameter spread
 - DOE: Based on Energy → input parameters derived from technologically achievable design spaces

Temperature field for untrained current value of 12500A @ final time

Error Norm: 6.86%

Source: Hamza Jamil , Model Order Reduction - Induction Hardening Process", MORSS 8.9.2020

ROM

Which part of the solution is in place?

Coefficients of distributed heat generation rates: Orthogonal projection on elements

Setup on system level

© CADFEM 2020

Validation strategy — on system level **CADFEM** Comparison of coefficients derived from field and system simulation

Validation strategy – field error norm

- Validation simulation data not applied for training
- Compare results from:
 - FEM-Solution
 - Expanded field data from system simulation with same reference load scenario

$$\begin{split} \Delta T(t = n, x, y, z) &= \Delta T_n \\ &= T_{FEM}(t = n, x, y, z) - \sum_i c_i \left(t = n\right) \cdot T_i \left(x, y, z\right) \\ &norm_{error} = \sqrt{\sum_n \Delta T_n^2 \cdot w_{node}(n)} \\ &Percentage \ norm_{error} = \frac{norm_{error}}{norm_{FEM}} \cdot 100 \end{split}$$

Summary and outlook for inductive hardening workflow:

- Goal: Error norm of reduced model below 10% achieved
- A progressive hardening process can be expressed effectively in a reduced system
- Speedup of 500 for 2D testcase (full transient FEM simulation vs. system simulation)
- Extension of method to 3D Models
- Method for appropriate definition of training data to be defined:
 - Minimize number of training runs required
 - Automatized generation of DOE

Conclusion Reduced order models for nonlinear, transient problems with field interaction

- Issue:
 - Coupled models
 - Nonlinear and transient
 - Field quantities
- Solution:
 - Partitioning nonlinear and transient behavior: Response surface and state space model
 - Transition between field solution and terminals by projection/expansion with basis functions.
- Opportunities:
 - Solving a whole new class of system-level problems