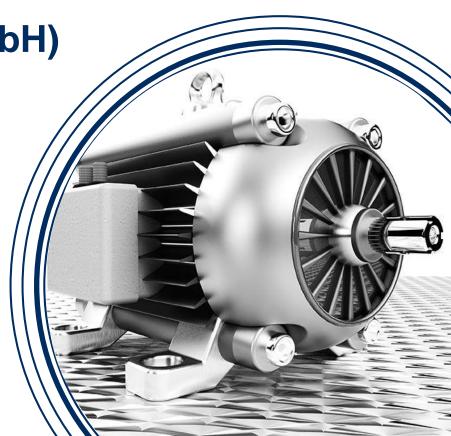
Acoustical Analysis of an Induction Motor

Jürgen Wibbeler (CADFEM GmbH)

CADFEM Elektromagnetik Technologietage 2021

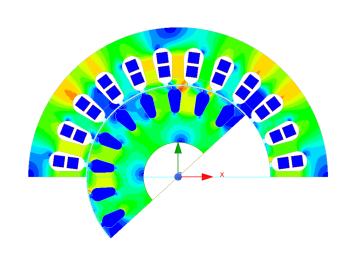
Gekoppelte Simulation

18. Mai 2021

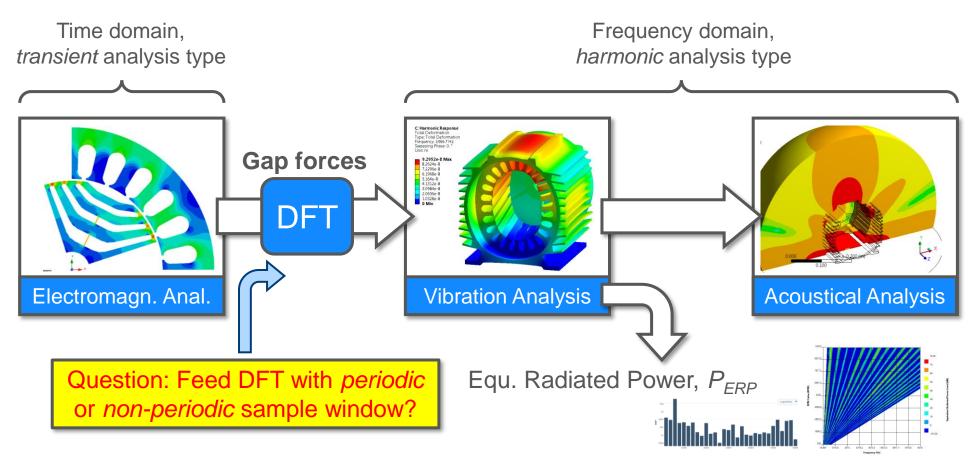


Outline

- 1. General NVH Analysis Procedure for E.-motors
- 2. Periodic Intervals
- 3. Case Study A: Using a Periodic Interval
- 4. Case Study B: Using a Non-periodic Interval
- 5. Case Study C: Applying a Window Function
- 6. Summary

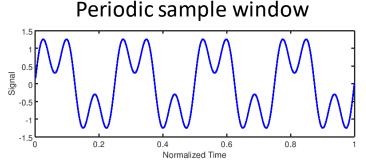


1. General NVH Analysis Procedure for E.-motors Generating Vibration and Noise Spectra



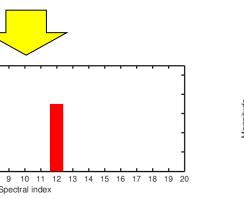
1. General NVH Analysis Procedure for E.-motors Non-periodic Intervals of Gap Forces → Leakage Effect

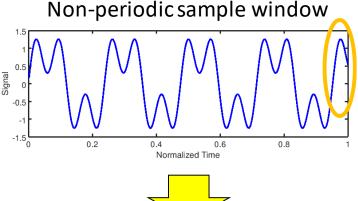
Time domain:



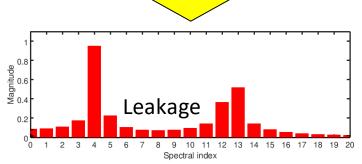
Spectral index

1 2 3 4 5 6 7 8





 Frequency domain:



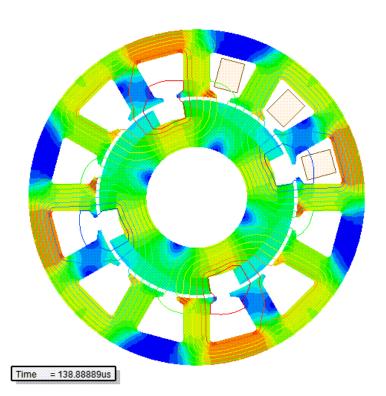
2. Periodic Intervals Synchronous Motors

CADFEM

Rotor speed = Speed of stator field

$$n = \frac{f_{el}}{p}$$
 $n \text{ in [s}^{-1}]$ $p \dots \text{ pole pairs}$

- Electromagnetic fields are always periodic within an electrical period $T_{\rm el} = 1/f_{\rm el}$.
- Gap forces are periodic within $T_{\rm el}/2$ (*), i.e. lowest possible excitation has a frequency of $f_1 = 2f_{\rm el} = 2p \cdot n$.



(*) Half electrical period because forces are proportional to squared magnetic flux density and show therefore *two* periods within *one* electrical period.

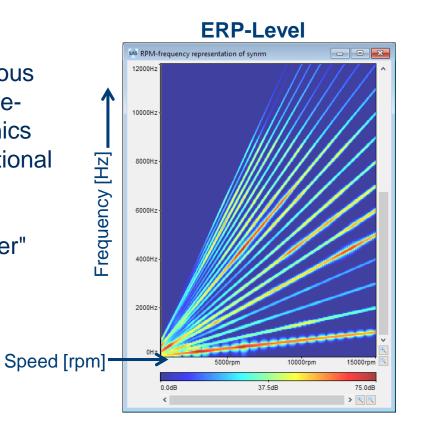
2. Periodic Intervals Synchronous Motor

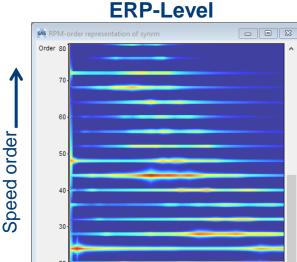
CADFEM°

Waterfall diagram:

 Due to the synchronous principle excitation frequencies (f₁, harmonics f₂, f₃, ...) are proportional with speed.

 $k_i = f/n =$ "speed order"





37.5dB

15000rpm

75.0dB

2. Periodic Intervals **Induction Motor**

CADFEM

Rotor speed < Speed of stator field

$$n = \frac{f_{el}}{p} \cdot (1 - s)$$

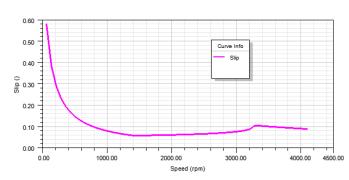
$$n \text{ in [s-1]}$$

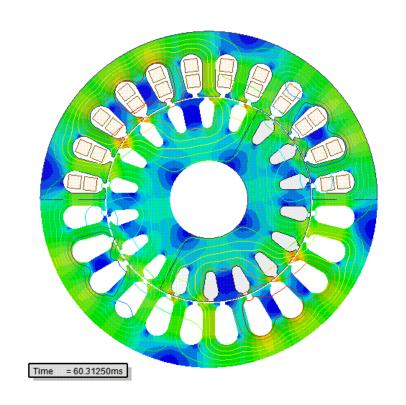
$$p \dots \text{ pole pairs}$$

$$s \dots \text{ slip [0...1]}$$

s...slip [0...1]

- Due to slip periodic conditions are not found within $T_{\rm el}$ or $T_{\rm el}/2$.
- Slip is a function of speed, s = s(n):





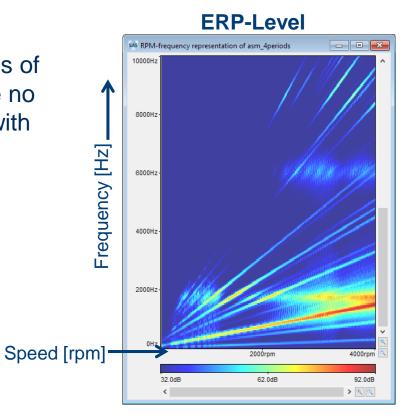
2. Periodic Intervals Induction Motor

CADFEM®

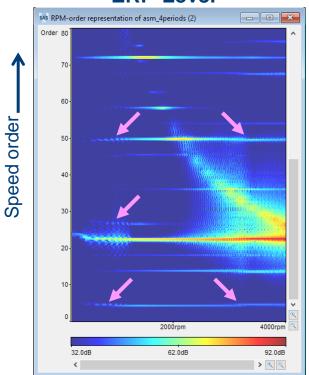
Waterfall diagram:

 If s = s(n) frequencies of some excitations are no longer proportional with speed.

 $\rightarrow k_i = f/n \neq \text{const.}$



ERP-Level

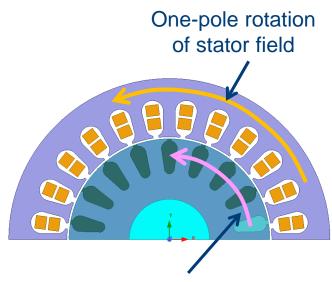


2. Periodic Intervals

How to Find a Periodic Interval of an Induction Motor?

- Periodic intervals for an induction motor can be found for discrete combinations of electrical periods and rotation angles:
- A periodic interval must contain both
 - an integer number of a half electrical periods

 (i.e. the stator field rotates by an integer number of stator poles) and
 - a rotation by an integer number of rotor slot divisions.
- This ensures at the stator:
 - Forces at end = Forces at start of the interval
- The discrete combinations result in *discrete slip values*.



Rotor rotation by an integer number of slot divisions

2. Periodic Intervals **Existing for Discrete Slip Values Only!**

Speed:

$$n = \frac{f_{\rm el}}{p} \cdot (1 - s)$$

 Slot rotation at s = 0: (synchronous speed)

$$n_{\text{slot,sync}} = \Delta t \cdot n \cdot N_{\text{rotor}} = \Delta t \cdot \frac{f_{\text{el}}}{p} \cdot N_{\text{rotor}} = \frac{n_{\text{elHP}} \cdot N_{\text{rotor}}}{2p}$$

Discrete slip values:

$$s = 1 - \frac{n_{\text{slot}}}{n_{\text{slot,sync}}} = 1 - \frac{n_{\text{slot}} \cdot 2p}{n_{\text{elHP}} \cdot N_{\text{rotor}}}$$

 Minimum possible slip steps at given n_{elHP} : (for $n_{\text{slot}} = n_{\text{slot,sync}}$, $n_{\text{slot,sync}}$ -1, $n_{\text{slot,sync}}$ -2, ...)

$$\Delta s = \frac{2p}{n_{\text{elHP}} \cdot N_{\text{rotor}}}$$

n ... rotational speed $f_{\rm el}$... electrical frequency s ... slip

... no. of pole pairs

N_{rotor} ... total no. of rotor slots

 n_{elHP} ... no. of *half* electr. periods

 $n_{\rm slot}$... rotated slots within Δt

 $n_{\mathrm{slot,sync}}$... rotated slots within Δt at synchronous speed

 $n_{\text{elHP}}, n_{\text{slot}} \in N$

2. Periodic Intervals Existing for Discrete Slip Values Only!

• Example motor: p = 2, $N_{\text{rotor}} = 18$

n _{elHP} = 2		n _{elHP} = 3		n _{elHP} = 4		<i>n</i> _{elHP} = 6	
n _{slot}	s [%]	n _{slot}	s [%]	n _{slot}	s [%]	n _{slot}	s [%]
8	11.11	13	3.70	17	5.56	26	3.70
7	22.22	12	11.11	16	11.11	25	7.41
6	33.33	11	18.52	15	16.67	24	11.11
5	44.44	10	25.93	14	22.22	23	14.81
$\Delta s = 11.11\%$		$\Delta s = 7.41\%$		$\Delta s = 5.56\%$		$\Delta s = 3.70\%$	

 $\Delta s \sim 1/n_{\text{elHP}}$ \rightarrow High resolution of the s(n)-curve requires long intervals.

3. Case Study A: Using a Periodic Interval ERP-result at a Single Operating Point

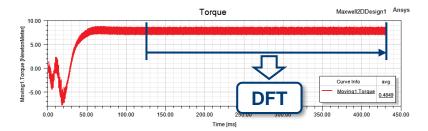
Motor Data, Given OP:

- p = 2
- $N_{\text{rotor}} = 18$
- n = 1400 rpm (23.333 rps)
- s = 5.865%
- $f_{\rm el}$ = 49.574 Hz
 - → No periodic interval which is practicable for simulation!



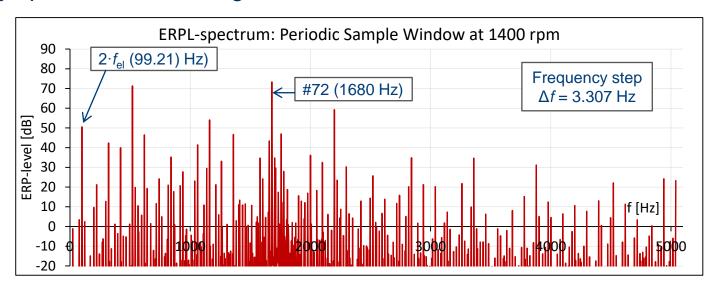
Adjust OP for Periodic Interval:

- Adjusted OP data:
 - n = 1400 rpm
 - s = 5.926%
 - $f_{\rm el}$ = 49.606 Hz
- found at periodic interval:
 - $n_{\text{elHP}} = 30$
 - $n_{\text{slot}} = 127 \ (\rightarrow 127/18 = 7.05556 \ \text{rotor revs.})$



3. Case Study A: Using a Periodic Interval ERP-result at a Single Operating Point

High quality spectrum w/o. leakage:



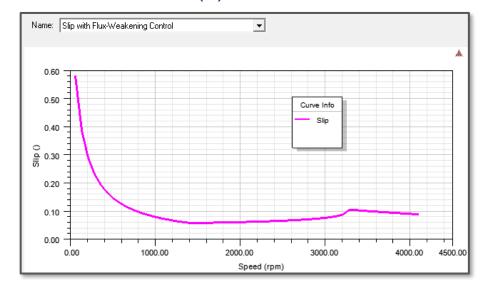
- 3048 time steps within periodic interval + additional steps to reach steady state
- Maxwell 2D runtime: ≈ 1 h

3. Case Study A: Using a Periodic Interval

- Pro:
 - Accurate spectrum
 - Good for a single or few selected OPs

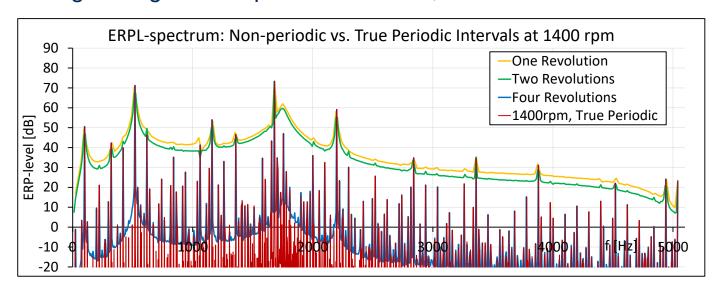
- Contra:
 - Periodic intervals can be very long
 - → Simulation time!
 - Hard to produce a Waterfall diagram along continuous speed axis (s = s(n)
 - → Periodic interval changes along *n*!)

Given s(n)-characteristics



4. Case Study B: Using a Non-periodic Interval ERP-result at Single Operating Point

• Spectrum showing leakage at sample windows of 1, 2 and 4 rotor revolutions:



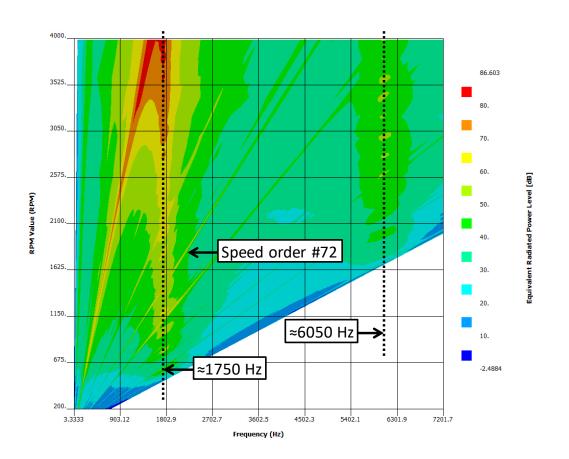
• Leakage depends on length of sample window (sample window of 4 revolutions above coincidentally hits almost a periodic interval; 4 revs. won't be generally sufficient!)

4. Case Study B: Using a Non-periodic Interval Waterfall Diagram (ERP-level)

Sample window length:

1 rotor revolution

(constant for all simulated speed points n = 200...4000 rpm)



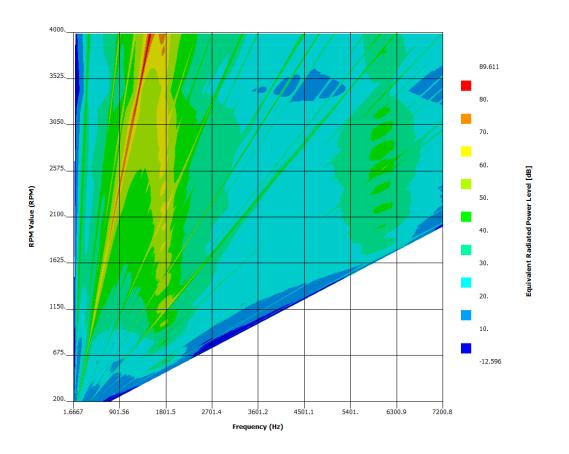
4. Case Study B: Using a Non-periodic Interval Waterfall Diagram (ERP-level)

17

Sample window length:

2 rotor revolutions

(constant for all simulated speed points n = 200...4000 rpm)



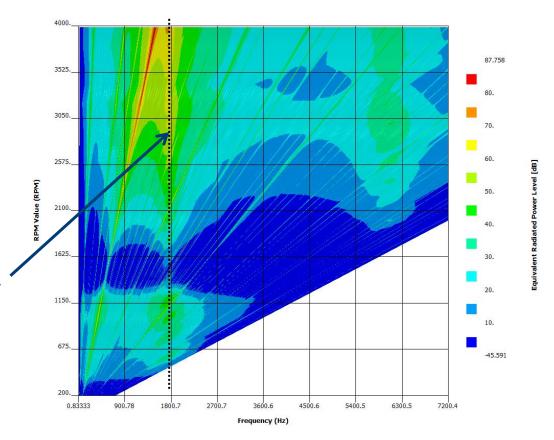
4. Case Study B: Using a Non-periodic Interval Waterfall Diagram (ERP-level)

• Sample window length:

4 rotor revolutions

(constant for all simulated speed points n = 200...4000 rpm)

Non-physical excitations by leakage disappear with increased length of the sample window.

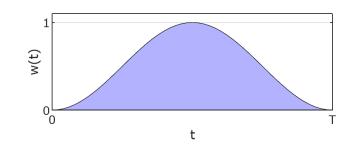


5. Case Study C: Applying a Window Function Treatment of Non-periodic Samples with a Window Function

• e.g. Hann window:

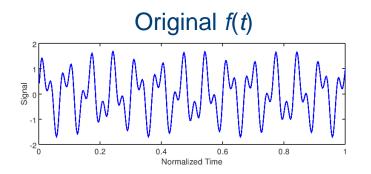
$$w(t) = \frac{1}{2} \left(1 - \cos \frac{2\pi t}{T} \right)$$

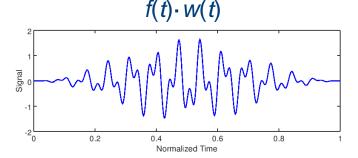
 $t = 0...T \rightarrow \text{sampling window}$



• Weighting the signal *f*(*t*) before DFT:

$$f^{(\text{Hann})}(t) = f(t) \cdot w(t)$$

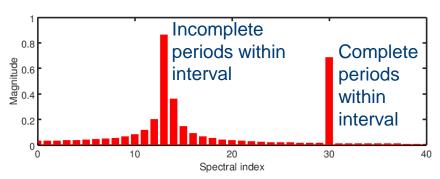


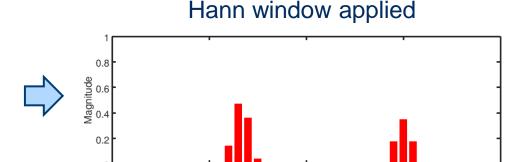


5. Case Study C: Applying a Window Function Treatment of Non-periodic Samples with a Window Function

30

Without window function

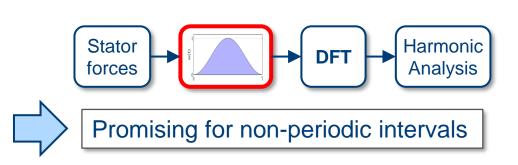




10

• Effects:

- + Increases signal-to-noise ratio in excitations
- - → Apply result correction of +6 dB!)
- Reduces spectral resolution

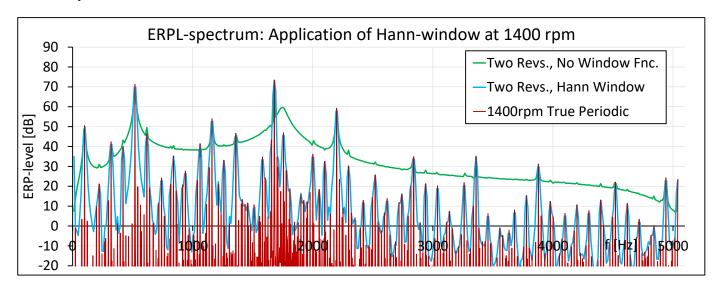


20

Spectral index

5. Case Study C: Applying a Window Function ERP-result with Hann Window Applied (Single Operating Point)

Spectrum for sample window of 2 rotor revolutions, with correction of +6 dB:

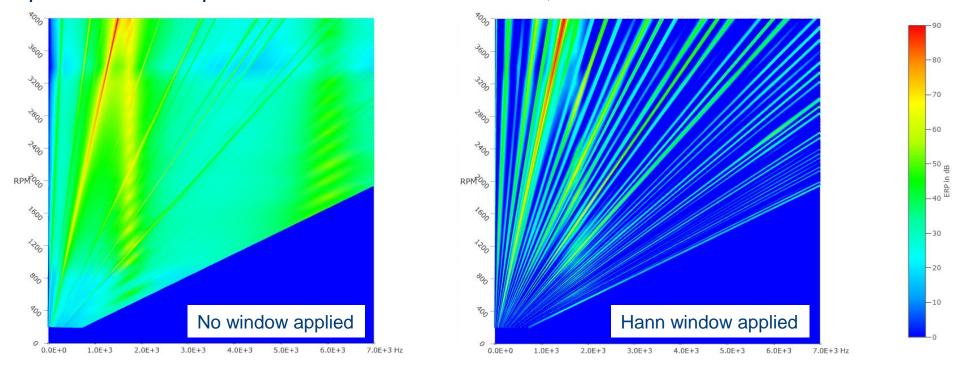


- Strongly improved result quality at moderate size of sample window
- Remaining error < 2 dB at important signal levels!

5. Case Study C: Applying a Window Function Waterfall Diagram with Hann Window Applied (ERP-level)

22

• Spectrum for sample window of 2 rotor revolutions, with correction of +6 dB:



(Comparison done using E.D.A. inside ANSYS)

6. Summary

- Slip of induction motors:
 - Long periodic time intervals for DFT, for discrete slip-values only
 - Not suitable for producing Waterfall diagrams
- Single operating points:
 - Adjust slip slightly to find a periodic interval
- Waterfall diagram (series of operating points):
 - Use non-periodic intervals
 - Application of window function returns strongly improved results