

Competence Center FEM

CADFEM®

Simulation ist mehr als Software®

EMV in der Leistungselektronik am Beispiel eines SEPIC Wandlers

Christian Römelsberger CADFEM GmbH, Felix Müller Continental Automotive GmbH

Agenda

- Sources of EMI
- Conducted emissions
- Emissions of a 12V SEPIC converter
- EMI Filters

DC-DC Converters and EMI in the Board Net

Sources of EMI – DC-DC Converters

- Example: SEPIC converter
 - Switching frequency 0.5MHz → Fast switching device!
 - Up- and Down-Conversion
 - Two modes of operation depending on load and duty cycle
 - Two-phase or Three-phase

Sources of EMI – DC-DC Converters

- Periodic Signal
 - Contributions in the spectral domain at multiples of 0.5MHz
 - Largest Contribution at 0.5MHz (typically)
- Switching and Resonant Circuits
 - Resonant circuits due to parasitic inductances and capacities
 - Board
 - Components
 - Frequency much higher than switching period
 - Steep switching edges excite those circuits
 - Contribution largely independent of switching period

Quantifying EMI

- Disturbances in form of
 - Conducted emissions (CE)
 - Radiated emissions (RE)

Receiver

- CISPR standard:
 - Artificial network (LISN)
 - Conducted emissions measured over a 50Ω termination
 - Two LISNS for power and GND

Quantifying EMI

- Important
 - Shielding from external signals
 - Proper ground
 - Wiring harnesses
 - Distance from proper ground

Modeling EMI

- Parasitic behavior of capacitors and inductors
 - Measured
 - Equivalent circuit fitted
- Behavioral models of active components from manufacturer
 - SPICE models

Modeling EMI

- Parasitics of the board and cables from field simulation
 - State space models
 - Important to take care of ground!

Modeling EMI

• Wiring Harness as a 2D model

Modeling EMI

- With ideal components and no parasitics from the layout
 - No resonant circuits
 - · No spikes due to switching

- The lower part of the emissions spectrum is modeled by an ideal circuit.
- For the higher part of the spectrum parasitics are important!

Conducted Emissions of the SEPIC Converter

- Transient signal measured at the LISNs
 - Periodic
 - Three phases of SEPIC

- Lower part of spectrum: Differential mode
- Higher part of spectrum Common mode

Conducted Emissions of the SEPIC Converter

Influence of a Wiring Harness

- Conducted (guided) waves on the wiring harness can form standing waves.
- Those resonances influence the emissions of the converter.

Influence of a Wiring Harness

• Standing waves in the wiring harness lead to resonances!

Mode	$l[\mu { m H/m}]$	c[pF/m]	$v_0[10^8 {\rm m/s}]$	$Z_0[\Omega]$
Differential	0.50	72	1.7	83
Common	0.99	12	2.9	287

$$\Delta f_{\text{diff}} = \frac{v_0}{2L} \approx 39 \text{MHz} \quad \text{or} \quad \Delta f_{\text{comm}} = \frac{v_0}{2L} \approx 66 \text{MHz}.$$

Influence of a Wiring Harness

• The wiring harness forms a resonant circuit

Influence of a Wiring Harness

Filters

 Reduce emissions with the help of EMI filters

Performance of a filter measured using S-Parameters

Filters

Effect of Filter

• No Harness

• With Harness

Radiated Emissions

- Wiring Harness acts as Antenna
- Push Excitations from Simplorer to HFSS

Radiated Emissions

Summary:

With appropriate modeling many EMI effects can be captured and even quantified!

CADFEM – Simulation is more than Software

PRODUCTS Software und IT Solutions

SERVICES Advice, Support, Engineering

KNOW-HOW

Transfer of knowledge

CADFEM in D, A, CH

- 1985 founded
- 2,300 customers
- 12 locations
- 185 employees (worldwide > 250)

Thank you!