Simulation is more than Software

Directcontact
0
Wishlist
0 0
Cart
EN

Simulation of Electromagnetic Fields with Ansys Maxwell

Simply attracting - magnets, coils, and their effect

CADFEM
Training eLearning
Electromagnetics
Electromagnetics

From magnetostatics to magnetodynamics: Learn, how to easily model and simulate magnets, coils, etc.

Whether the task is linear drives for automation technology, actuators and clutches for automotive applications, inductive charging for electric vehicles, guides and gates for sorting systems, or permanent magnet brakes and sensors for the pitch regulation of the rotor blades of ...

Show agenda and detailed information

Overview
Level:
Basic
Target group:
Users, Instructors
Prerequisites:
None
Benefits:
  • Learning workflows for tasks ranging from magnetostatics to magnetodynamics
  • Linear and non-linear modeling of ferromagnetic materials
  • Simulation of eddy currents and losses, forces and torques
  • Maxwell Fields Calculator — a tool for user-defined results
Applications:
Low frequency
Software used:
Ansys Maxwell
Level
Basic
Target group
Users, Instructors
Prerequisites
None
Benefits
  • Learning workflows for tasks ranging from magnetostatics to magnetodynamics
  • Linear and non-linear modeling of ferromagnetic materials
  • Simulation of eddy currents and losses, forces and torques
  • Maxwell Fields Calculator — a tool for user-defined results
Applications
Low frequency
Software used
Ansys Maxwell
agenda day 1
  • “Necessary” theory and overview
  • Modeling and meshing
  • Magnetic materials in Maxwell
  • Simulating static magnetic fields in Maxwell
agenda day 2
  • Eddy Current Analysis
  • Transient electromagnetic analyses
  • Including Mechanical Movements
  • Evaluation tools
agenda day 3
  • Solving technical problems
  • Electric circuits and magnetic losses
  • Maxwell couplings
  • Consolidate knowledge and ensure transfer

Now available as eLearning course

Choose your start date: From this date, you will receive access to your course and a ready-installed AWS training cloud with up-to-date Ansys software for 30 days.

Available dates

Not the right offer? No suitable date? Whether eLearning, classroom courses, live online training or customized workshops - together we identify the best option for you.

Our offer in detail

This training is offered as a 3-day course or alternatively as
a self-paced eLearning course, in which you should invest a total of 3 learning day(s) with your own time allocation.

Day 1

01 “Necessary” theory and overview

  • Application areas for Ansys Maxwell
  • Motivation: Permanent magnet brake
  • The solver in Maxwell
  • Where can I get support when it goes wrong?

02 Modeling and meshing

  • Model construction directly in Maxwell
  • Geometry orientation and coordinate systems
  • Boolean operations
  • The rules of geometry modeling
  • The meshing process in Maxwell
  • Workshop: Static force effect with linear conditions

03 Magnetic materials in Maxwell

  • Modeling ferromagnetic materials: linear and non-linear
  • BH curves: How to insert them into the material manager
  • Permanent magnets (PM): Linear and non-linear, orientation
  • Demo Magnet Skew: Helical magnetization
  • Inclusion of temperature dependency
  • Workshop: Static force effect considering temperature dependency and non-linearities

04 Simulating static magnetic fields in Maxwell

  • Modeling electrical sources
  • Boundary conditions: Purpose and definition
  • Magnetic field energy as the basis for calculating force and torque
  • Displaying field variables: Scalar and vector plots in plane and 3D space
  • Workshop: Permanent Magnet Brake (static)

Day 2

05 Eddy Current Analysis

  • Applications: Inductors, transformers, contactless battery charging
  • Adaptive meshing for skin and proximity effects
  • Insulation Boundary (M3D)
  • “Desired eddy current” workshop: Contactless current transfer
  • “Parasitic eddy current workshop”: High losses

06 Transient electromagnetic analyses

  • Sine/cosine definitions for sources
  • Datasets for time-, distance-, or speed-dependent signals of any form
  • Linking the mesh link from static simulations
  • Solver settings
  • Workshop: Transient Switching Operations

07 Including Mechanical Movements

  • Forms of motion and their definition
  • Geometric setup: Moving parts – Object groups
  • Mesh rules for translation and rotation
  • Demo: Linear motor
  • Workshop: Linear and Rotating Movements (Constant Speed)

08 Evaluation tools

  • Solution information following a simulation
  • Convergence check: How good is the solution?’
  • Fields Calculator: For user-defined results
  • Animating parametric and time field patterns
  • 3D plots
  • Simulation Reports
  • Workshop: Hall Effect Sensors

Day 3

09 Solving technical problems

  • Mechanical transient effects
  • Application of the learned content
  • Derivation of additional result variables
  • Workshop: Design of an eddy current brake

10 Electric circuits and magnetic losses

  • Circuit editor connecting the windings
  • Circuit editor component library
  • Parametrization in the circuit editor
  • Computing iron losses (eddy current and transient solver)
  • Applying the Steinmetz model
  • Workshop: IPM Synchronous Motor

11 Maxwell couplings

  • Ansys-Maxwell coupling to AEDT Mechanical: thermal, mechanical
  • Demo: Link to IcePak
  • Workshop: Steady state induction heating
  • Summary and outlook for additional couplings

12 Consolidate knowledge and ensure transfer

Now you have a better understanding of your own tasks and know how to tackle them with Maxwell. We summarize the most important points again and give you the opportunity to reflect on important questions in order to consolidate your new knowledge.

Whether the task is linear drives for automation technology, actuators and clutches for automotive applications, inductive charging for electric vehicles, guides and gates for sorting systems, or permanent magnet brakes and sensors for the pitch regulation of the rotor blades of a wind turbine – the development of all of these actuators and measurement applications can only be reliably carried out with simulation. In this course you will get to know the possibilities of simulating electromagnetic components with Ansys Maxwell.

Project and development engineers in electromagnetics, research staff, and students interested in efficiently acquiring relevant & practical knowledge of using Ansys Maxwell.

Electromagnetic alternating effects (e.g. attenuations and eddy currents) or non-linearity (e.g. saturation) complicate the understanding of systems on an analytical basis. In this seminar, you will learn all procedures required for precise and fast resolution of electromagnetic solutions, including a solenoid valve example, providing knowledge that you can subsequently apply to your own models.

Dr.-Ing. Jörg Neumeyer
CAE Engineer, CADFEM Germany GmbH, Hanover
Joël Grognuz
Head of Engineering, CADFEM (Suisse) AG, Renens

Placement in the CADFEM Learning Pathway

Do you have questions on the training or the eLearning?

When will I receive the final confirmation for my training booking?

Straight after you sign up, an automatic confirmation of receipt will be sent to the email addresses you provided. Once you have successfully verified the data you provided, you will receive your personalized sign-up confirmation, containing further information on course fees, the billing address, etc., by email within two to three working days.  

As soon as the minimum number of attendees has been reached, you will receive a final training confirmation containing further information on how to get to the venue. We recommend that you wait until you have received this final confirmation before booking your travel and accommodation.

If the minimum number of attendees is not reached, we reserve the right to cancel the training seven days before it is due to start at the latest. We are happy to inform you on changing your booking to an alternative date. Please note that we accept no liability for hotel or travel bookings that attendees have already made.

When is the sign-up deadline for a training?

Training places will generally be allocated based on the order in which attendees sign up. For this reason, we always recommend booking for your desired date as early as possible.

As long as a coures still has free places, it can be booked.

At what time do the training courses begin and end?

Usually the training courses start at 9:00 am and end at 5:00 pm of the respective local time. The actual course times will be stated in the booking confirmation. Please note that, depending on the training host, there may be a possible time shift between your and the provider's local time. Therefore all local times are provided with the valid time shift to Greenwich Mean Time (GMT). 

Can I test the eLearning offer without obligation?

To get a clear impression of our online learning format, we offer you a trial allowing you access to the starting module of an eLearning course of your choice. No costs, no cancellation period or anything similar. Moreover, with this free test access you can check all the technical requirements for a smooth learning process. You can easily request the free module from any eLearning course.

How much time should I allow for an eLearning course?

Each online course day comprises four eLearning modules. You should ideally allow 90 to 120 minutes of uninterrupted learning time for each module. This will allow you to acquire the knowledge provided by a module and to consolidate it through quiz questions and Ansys exercises. By dividing each module into micro learning units, you can also make good use of smaller time windows, such as on your commute.

For how long can I access the learning content?

Prerequisite for the use of the eLearning courses is the use of a personal access to the CADFEM learning platform

Upon purchase, the duration of use of your eLearning course is 12 months. After expiration of the usage period you have access to your completed eLearning course for another 12 months.

As a user of a learning subscription plan, the duration of use of your flat rate is 12 months. After this period of use has expired, you will have access to your completed eLearning course for a further 12 months.

Head of Seminars
Dr. sc. Jörg Helfenstein